Document Clustering: Before and After the Singular Value Decomposition

نویسندگان

  • Md Maruf HASAN
  • Yuji MATSUMOTO
چکیده

Document Clustering is an issue of measuring similarity between documents and grouping similar documents together. Information Retrieval (IR) is an issue of comparing query with a collection of documents to locate a set of documents relevant to a particular query. In the vector space IR model, a query is treated as a document which consists of a few terms. Therefore, in both clustering and retrieval we necessarily address issues involving representation of documents and computation of similarities between a set of documents. In the vector space IR model, term-document matrix is computed from a collection of documents using a certain weighting scheme. Latent Semantic Indexing, an efficient vector space retrieval approach, uses Singular Value Decomposition technique to reduce the rank of the original term-document matrix. Theoretically, SVD, a dimensionality reduction technique, performs a term-to-concept mapping, and therefore, conceptual indexing and retrieval is made possible. In this paper, we discuss the clustering of documents by calculating pair-wise similarity between documents using the original term-document matrix and the decomposed term-document matrix. We also report an evaluation method based on the clustering hypothesis and analyze the clustering results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Graph Clustering by Hierarchical Singular Value Decomposition with Selectable Range for Number of Clusters Members

Graphs have so many applications in real world problems. When we deal with huge volume of data, analyzing data is difficult or sometimes impossible. In big data problems, clustering data is a useful tool for data analysis. Singular value decomposition(SVD) is one of the best algorithms for clustering graph but we do not have any choice to select the number of clusters and the number of members ...

متن کامل

A Multi-Document Multi-Lingual Automatic Summarization System

Abstract. In this paper, a new multidocument multi-lingual text summarization technique, based on singular value decomposition and hierarchical clustering, is proposed. The proposed approach relies on only two resources for any language: a word segmentation system and a dictionary of words along with their document frequencies. The summarizer initially takes a collection of related documents, a...

متن کامل

Singular Value Decomposition based Steganography Technique for JPEG2000 Compressed Images

In this paper, a steganography technique for JPEG2000 compressed images using singular value decomposition in wavelet transform domain is proposed. In this technique, DWT is applied on the cover image to get wavelet coefficients and SVD is applied on these wavelet coefficients to get the singular values. Then secret data is embedded into these singular values using scaling factor. Different com...

متن کامل

Fuzzy clustering of time series data: A particle swarm optimization approach

With rapid development in information gathering technologies and access to large amounts of data, we always require methods for data analyzing and extracting useful information from large raw dataset and data mining is an important method for solving this problem. Clustering analysis as the most commonly used function of data mining, has attracted many researchers in computer science. Because o...

متن کامل

Dynamic Document Clustering Using Singular Value Decomposition

Incremental document clustering is important in many applications, but particularly so in healthcare contexts where text data is found in abundance, ranging from published research in journals to day-to-day healthcare data such as discharge summaries and nursing notes. In such dynamic environments new documents are constantly added to the set of documents that have been used in the initial clus...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002